Folic Acid in Human Nutrition

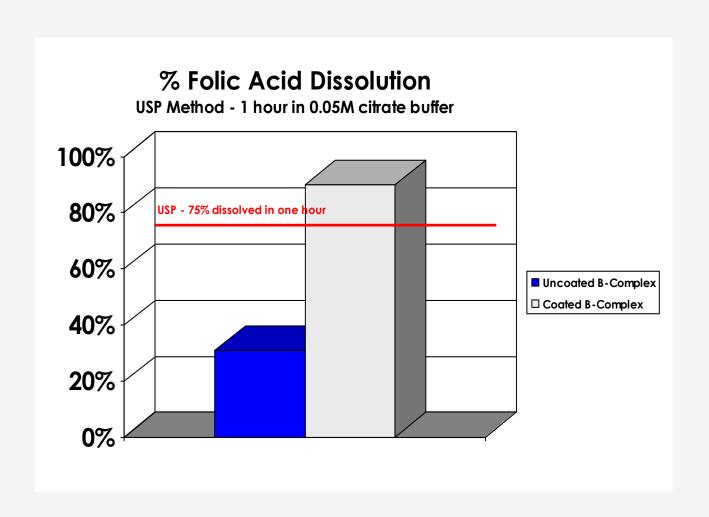
- Folic acid is a water soluble B vitamin widely distributed in foods. Deficiencies lead to impaired cell division and altered protein synthesis.
- Newborn children of women receiving adequate folic acid in their diet show a lower incidence of spina bifida and anencephaly, neural tube defects that affect 2,500 newborns annually.
- In 1992 the US Public Health Service recommended that women of child-bearing age consume 400mcg/day of folic acid.
- The FDA required folic acid fortification of breads and enriched cereal grain products beginning in January of 1998.
- The crystalline synthetic form of folic acid commonly found in dietary supplements is twice as bioavailable as natural folate found in leafy, dark green vegetables such as broccoli and spinach.

History of USP Dissolution Standards

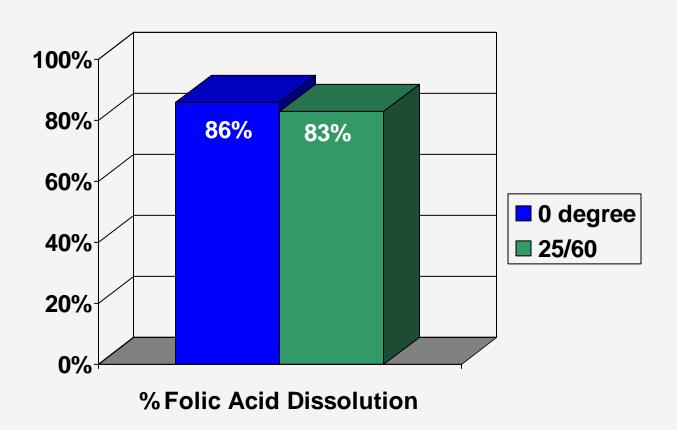
- November 1992 Preliminary nutritional monographs (disintegration requirement only).
- May 1993 First dissolution standard established incorporating "index" vitamins and minerals. Reported as "% assay".
- January 1995 Folic acid dissolution test added (when folate related neural tube defect claims are made). Reported as "% assay".
- May 1997 Folic acid dissolution now reported as "% label".
- November 1998 Folic acid dissolution testing required regardless of claims.
- January 2000 All dissolution test reporting changed to "% label". Alternate 0.05M pH 6.0 citrate buffer media added due to difficulties with dissolution in water.

The Problem – Folic Acid Dissolution

- 1997 Hoag, et.al. reported on high USP dissolution failure rate of folic acid-containing prenatal products (<u>J. Am. Pharm. Assoc.</u> 1997)
- May 1998 FDA courtesy letter to industry regarding potential for similar failures in dietary supplements.
- Possible causes elucidated
 - Particle size of folic acid raw material
 - Insufficient or non-uniform blending
 - Formulation issues (insoluble carriers)
 - Complexation with minerals (Fe⁺², Cu⁺²)
 - Test methodology issues citrate buffer proposed


A Solution – Enhanced Bioavailability Folic Acid Coating

- Crystalline folic acid is dispersed in a water soluble film forming polymer, such as hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose, acrylic polymer or soluble starch.
- An appropriate plasticizer, such as glycerine, propylene glycol or hydroxylated soy lecithin is added.
- Optional coloring and/or flavoring agents can be added.
- The resulting dispersion is applied utilizing conventional aqueous film coating techniques to tablet cores containing the remaining dietary ingredients (vitamins, minerals, botanicals, amino acids, etc.).
- Added benefits include taste masking and ease of swallowing.
- Excellent process and product stability.
- Patent pending.


Analytical Determination of Folic Acid

- Standard USP dissolution apparatus (75 RPM paddle speed, shielded from light due to folic acid light instability)
- Dissolution media: Water or 0.05M citrate buffer at 37°C...
- A total of 6 tablets are tested. Withdraw solution aliquots after 60 minutes and pool samples. Filter pooled sample.
- Inject filtered sample in reverse-phase C18 HPLC

Folic acid dissolution – Uncoated vs. Coated B-Complex tablets

12 Month Ambient Stability Data (25°C/60% RH)

Conclusion

- Coating multivitamin or multivitamin-multimineral tablets with a folic acid coating offers a simple way of enhancing folic acid dissolution performance and improving bioavailability.
- **■** Process is simple, cost effective and stable.
- Performance may vary depending on each particular formulation.

Enhancement of Folic Acid Dissolution in Solid Dosage Forms of Dietary Supplements

- Douglas DeBernardi, Karen Osman and Jack Hegenauer
- Forrest C. Shaklee Research Center, Hayward, CA 94545