Cyanocobalamin vs. Methylcobalamin

Three misleading information to be clarified:

- 1. Cyanocobalamin is toxic.
- 2. Methylcobalamin is natural.
- 3. People with methylation problem should take methylcobalamin since supplemental methylcobalamin is the ready-to-work coenzyme (cofactor) form.

1. Cyanocobalamin is safe, NOT toxic!

- If you eat ONLY 1 g of almond (1 whole piece), you can ingest 15.6 times higher cyanide than taking 1 serving of cyanocobalamin from Shaklee B complex. 1-3
- Most clinical studies used cyanocobalamin, NOT methylcobalamin, to solve vitamin B₁₂ deficiencies, without showing any toxic effects
- CDC indicated following in the section on "How can cyanide affect my health?"
 - \triangleright "Vitamin B₁₂, a natural chemical containing cyanide, is beneficial to your body because it prevents anemia. The cyanide binds in vitamin B₁₂ so that it does not serve as a source of cyanide exposure and cannot harm you."
- Since cyanocobalamin is NON-toxic, cyanide toxicity is treated by injecting hydroxocobalamin, so that cyanide can bind with the cobalamin to form non-toxic cyanocobalamin in the cell and then to be excreted via urine safely.^{5,6}
 - 1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793392/pdf/ISRN.TOXICOLOGY2013-610648.pdf
 - 2. http://www.answers.com/Q/How many almonds are in 1 gram
 - 3. http://nordicfoodlab.org/blog/2013/8/hydrogen-cyanide
 - 4. http://www.atsdr.cdc.gov/phs/phs.asp?id=70&tid=19
 - 5. http://epmonthly.com/article/hydroxocobalamin-turning-cyanide-into-vitamin-b12/
 - 6. https://www.health.ny.gov/environmental/emergency/chemical_terrorism/cyanide_tech.htm

Cyanide Concentrations in Foods

Common foods contain much higher amount of cyanide than the supplement containing cyanocobalamin which includes 2% of cyanide. 1,2

			Cyanide content (mg/kg)	Average levels (mg/kg)	Standard error (mg/kg)
Sweet almond	Varieties	Variety1	27		
		Variety2	32.40	25.20	8.24
		Variety3	16.20		
Bitter almond	Origin	Sfax ₁	1053		
		Sfax ₂	1215	1062	148.70
		North	918		
Apricot kernels	Origin	Tastour	540		
		Sfax	583.20		
		Sbiba	804.60	851.04	303.28
		Monastir	1134		
		Morneg	1193.40		

Type of product	Cyanide concentration (in mg/kg or mg/L)		
Cereal grains and their products	0.001-0.45		
Soy protein products	0.07-0.3		
Soybean hulls	1.24		
Apple seeds	500-700		
Apricot pits, wet weight	89-2170		
Home-made cherry juice from pitted fruits	5.1		
Home-made cherry juice containing 100% crushed pits	23		
Commercial fruit juices			
Cherry	4.6		
Apricot	2.2		
Prune	1.9		
Tropical foodstuffs			
Cassava (bitter) - dried root cortex	2360		
Cassava (bitter) - whole tubers	380		
Cassava (sweet) - whole tubers	445		
Sorghum - whole immature plant	2400		
Bamboo - immature shoot tip	7700		
Lima beans from Java (coloured)	3000		
Lima beans from Puerto Rico (black)	2900		
Lima beans from Burma (white)	2000		

EXPLANATIONS:

- The molecular mass of cyanocobalamin is 1355.38 g/mol whereas that of cyanide is 26.02. Therefore, the percent of cyanide in cyanocobalamin is about 2% (26 / 1355 = 0.02; 0.02 x 100 = 2%).
- Shaklee B complex contains 1.6 mcg of cyanide from 81 mcg of cyanocobalamin.
- The average cyanide content in sweet almonds is 25.20 mg/kg as shown in the Table 1.
- It means there is 25 mcg of cyanide in 1 g of sweet almond (one piece of almond).
- So, there is 15.6 times higher cyanide in one almond than cyanocobalamin from Shaklee B complex (25/1.6=15.6).

(NOTE: The weight of one almond is about 1 gram and bitter almonds contain a lot higher cyanide.)

- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793392/pdf/ISRN.TOXICOLOGY2013-610648.pdf
- 2. http://nordicfoodlab.org/blog/2013/8/hydrogen-cyanide

Several Forms of Cobalamin

- There are several cobalamin forms of vitamin B12 according to the ligand:
 - ✓ Cyanocobalamin (cyanide group)
 - ✓ Adenosylcobalamin (5'deoxyadenosyl group)
 - ✓ Hydrocobalamin (=aquacobalamin: H₂O)
 - ✓ Hydroxocobalamin (=hydroxycobalamin: OH)
 - ✓ Methylcobalamin (methyl group)

Methylcobalamin that is used in dietary supplements can be produced by bacteria.

5'-deoxyadenosylcobalamin and methylcobalamin as sources for vitamin B₁₂

Methylcobalamin

The petitioner indicates that methylcobalamin may be manufactured semi-synthetically following extraction of vitamin B_{12} from animal material. The petitioner states that alternatively, it may be produced from Genetically Modified Micro-organisms (GMMs).

What is the starting material for chemically synthesized methylcobalamin?

Cyanocobalamin or hydroxocobalamin

Process for production of methylcobalamin US 6657057 B2

ABSTRACT

The present invention provides an industrially excellent and novel process for producing methylcobalamin useful as medicines. Namely, it provides a process for producing methylcobalamin, which comprises the step of methylating cvanocobalamin or hydroxocobalamin in the presence of a reducing agent and a water-soluble methylating agent.

Cobalamin Processing in the Cell:

- 1. Ligand removal (all ligand to be removed via dealkylation, decyanation, or reduction)
- 2. Form a free form of cobalamin (Cbl)
- 3. Reattaching methyl group to be make "methylcobalamin," a cofactor for methionine synthase
- 4. Reattaching adenosyl group to make "adenosylcobalamin," a cofactor fro Methylmalonyl CoA Mutase

Methylcobalamin

Re-methylation (the 1st step) and De-methylation (the 2nd step) of Cobalamin

The 1st Step: transferring methyl (-CH₃) group from CH₃-FH₄ to free cobalamin to re-synthesize CH₃B₁₂ (methylcobalamin)

- **FH**₄: Tetra-hydro-folate
- CH₃-FH₄: Tetra-hydro-methyl-folate (THMF)

The 2nd Step

The 2nd Step: transferring methyl (-CH₃) group from methylcobalamin (CH₃B₁₂) to Homocysteine to synthesize Methionine, re-generating free-B₁₂

- CH₃B₁₂: Methylcobalamin
- Co(I, or II)B₁₂: Free-cobalamin

*MS: Methionine Synthase = homocysteine: methionine methyltransferase

Truth about Methylcobalamin

- Oral methylcobalamin does <u>NOT</u> reach the destination as the ready-towork form because the cofactor form of methylcobalamin has to be resynthesized (REMETHYLATED) in the cell from the free cobalamin.
- "Supplementing methylcobalamin (or adenosylcobalamin) is unlikely to be advantageous when compared to cyanocobalamin" because:
 - ✓ methylcobalamin (or adenosylcobalamin) follows the same route of intracellular processing as cyanocobalamin and
 - ✓ methylcobalamin can be derived from cyanocobalamin

CONCLUSION on Vitamin B12

- 1. Cyanocobalamin is Safe and the most studied form of B12 (24,475 articles in PubMed).
- 2. Methylcobalamin is likely produced by bacteria or derived from cyanocobalamin.
- 3. NO difference between cyanocobalamin and methylcobalamin to function in the body:
 - Supplemental methylcobalamin is NOT the ready-to-use coenzyme form
 - <u>People with methylation defect can utilize cyanocobalamin</u> since cyanocobalamin can be efficiently converted to methyl- or adenosyl-cobalamin.
- 4. Would it help to take methylcobalamin over cyanocobalamin when told you have a "methylation defect"? → NO
- 5. There are a lot more cyanide from natural food sources than the cyanide from cyanocobalamin in Shaklee supplements per serving.
- 6. To detoxify cyanide poisoning, hydroxocobalamin is injected (i.v.) to form cyanocobalamin in the body because:
 - making cyanocobalamin is a way to remove cyanide from the body safely
 - cyanocobalamin is non-toxic and excreted via urine safely

Reference for Vitamin B12

- 1. Czerwonka M, Szterk A, Waszkiewicz-Robak B. Vitamin B12 content in raw and cooked beef. Meat Sci. 2014 Mar;96(3):1371-5. PubMed PMID: 24361556
- 2. Mark HF, Othmer DF, Overberger CG, Seaborg GT. Vitamin B12. 3rd ed. *Encyclopedia of Chemical Technology*. Vol 9, John Wiley & Sons, New York, 1984, pp166-185.
- 3. Watkins D, Rosenblatt DS. Lessons in biology from patients with inborn errors of vitamin B12 metabolism. Biochimie. 2013 May;95(5):1019-22. PubMed PMID: 23402785.
- 4. Friedrich W. Vitamin B12: Biosynthesis; Production of Vitamin B12 by Microorganisms; Biochemical Mechanism. *Vitamins*. Walter de Gruyter, New York, 1988, pp867-873.
- 5. Kim J, Hannibal L, Gherasim C, Jacobsen DW, Banerjee R. A human vitamin B12 trafficking protein uses glutathione transferase activity for processing alkylcobalamins. J Biol Chem. 2009 Nov 27;284(48):33418-24. doi: 10.1074/jbc.M109.057877. Epub 2009 Oct 2. PubMed PMID: 19801555; PubMed Central PMCID: PMC2785186
- 6. Gherasim C, Hannibal L, Rajagopalan D, Jacobsen DW, Banerjee R. The C-terminal domain of CblD interacts with CblC and influences intracellular cobalamin partitioning. Biochimie. 2013 May;95(5):1023-32. doi: 10.1016/j.biochi.2013.02.003. Epub 2013 Feb 14. PubMed PMID: 23415655; PubMed Central PMCID: PMC3657558.
- 7. Obeid R, Fedosov SN, Nexo E. Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Mol Nutr Food Res. 2015 Jul;59(7):1364-72. doi: 10.1002/mnfr.201500019. Epub 2015 May 12. PubMed PMID: 25820384; PubMed Central PMCID: PMC4692085.
- 8. European Food Safety Authority. Scientific Opinion on Thiamin Health Benefits. EFSA Journal 2009;7(9):1222. on 5'-deoxyadenosylcobalamin and methylcobalamin as sources for Vitamin B12 added as a nutritional substance in food supplements. *The EFSA Journal* (2008) 815, 1-21
- 9. CDC: Public Health Statement for Cyanide, July 2006, Agency for Toxic Substances & Disease Registry. 1.5 How can cyanide affect my health? http://www.atsdr.cdc.gov/phs/phs.asp?id=70&tid=19
- 10. Andrès E. Oral Cobalamin (Vitamin B12) Therapy: From Empiricism and Personal Experience to Evidence Based Medicine and Perspective of Recommendations and Guideline. J Blood Disord Transfus 2012, 3:2, 1000e102.
- 11. Linnell JC, Wilson MJ, Mikol YB, Poirier LA. Tissue distribution of methylcobalamin in rats fed amino acid-defined, methyldeficient diets. J Nutr. 1983 Jan;113(1):124-30. PubMed PMID: 6822883.

